Stock Market Analysis and Prediction

نویسندگان

  • Eric Alexander
  • Emily Kawaler
  • Dan Szafir
چکیده

Stock market analysis is a widely studied problem as it offers practical applications for signal processing and predictive methods and a tangible financial reward. Creating a system that yields consistent returns is extremely challenging and is currently an open problem as stock market prices are extremely volatile and vary widely both within a given stock and comparatively amongst many stocks. Further, stock market data is influenced by a large number of factors including foreign and domestic economies, trade agreements, wars, seasons, and even day of the week [12, 3]. Any trading strategy must of necessity balance desire for immediate returns with the possibility of larger payoffs in the future, and many different approaches towards prediction have been attempted including neural networks and fuzzy reasoning [1], support vector machines [9], and even attempting prediction using data-mining techniques over textual data in financial news [14]. In this paper, we examine the abilities of linear regression, random forests, and support vector machines (SVM) with SMO to predict future prices and trends in a variety of stocks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stock Market Modeling Using Artificial Neural Network and Comparison with Classical Linear Models

Stock market plays an important role in the world economy. Stock market customers are interested in predicting the stock market general index price, since their income depends on this financial factor; Therefore, a reliable forecast in stock market can be extremely profitable for stockholders. Stock market prediction for financial markets has been one of the main challenges in forecasting finan...

متن کامل

Designing a Bankruptcy Prediction Model Based on Account, Market and Macroeconomic Variables (Case Study: Cyprus Stock Exchange)

The development of the Cyprus Stock Exchange together with the increasing trend of investors’ presence in financing activities has led to the importance of this market. In such circumstances, the first step towards a sustainable development of the Exchange is to support the investors. Risk of bankruptcy for the investee is a major challenge that an inexperienced stock investor encounters. In th...

متن کامل

Forecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)

The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...

متن کامل

Stock price prediction using the Chaid rule-based algorithm and particle swarm optimization (pso)

Stock prices in each industry are one of the major issues in the stock market. Given the increasing number of shareholders in the stock market and their attention to the price of different stocks in transactions, the prediction of the stock price trend has become significant. Many people use the share price movement process when com-paring different stocks while investing, and also want to pred...

متن کامل

Designing a smart algorithm for determining stock exchange signals by data mining

One of the most important problems in modern finance is finding efficient ways to summarize and visualize the stock exchange market. This research proposes a smart algorithm by means of valuable big data that is generated by stock exchange market and different kinds of methodology to present a smart model.In this paper, we investigate relationships between the data and access to their lat...

متن کامل

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011